RFI Mitigation in Microwave Radiometry Using Wavelets

نویسندگان

  • Adriano Camps
  • José Miguel Tarongí
چکیده

The performance of microwave radiometers can be seriously degraded by the presence of radio-frequency interference (RFI). Spurious signals and harmonics from lower frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection filters due to the finite rejection modify the detected power and the estimated antenna temperature from which the geophysical parameters will be retrieved. In recent years, techniques to detect the presence of RFI have been developed. They include timeand/or frequency domain analyses, or statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean Gaussian process. Current mitigation techniques are mostly based on blanking in the time and/or frequency domains where RFI has been detected. However, in some geographical areas, RFI is so persistent in time that is not possible to acquire RFI-free radiometric data. In other applications such as sea surface salinity retrieval, where the sensitivity of the brightness temperature to salinity is weak, small amounts of RFI are also very difficult to detect and mitigate. In this work a wavelet-based technique is proposed to mitigate RFI (cancel RFI as much as possible). The interfering signal is estimated by using the powerful denoising capabilities of the wavelet transform. The estimated RFI signal is then subtracted from the received signal and a “cleaned” noise signal is obtained, from which the power is estimated later. The algorithm performance as a function of the threshold type, and the threshold selection method, the decomposition level, the wavelet type and the interferenceto-noise ratio is presented. Computational requirements are evaluated in terms of quantization levels, number of operations, memory requirements (sequence length). Even OPEN ACCESS Algorithms 2009, 2 1249 though they are high for today’s technology, the algorithms presented can be applied to recorded data. The results show that even RFI much larger than the noise signal can be very effectively mitigated, well below the noise level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an L-Band Microwave Radiometer with Active Mitigation of Interference

For increased sensitivity in L-band radiometry, bandwidths on the order of 100 MHz are desirable. This will likely require active countermeasures to mitigate RFI. In this paper, we describe a new radiometer which coherently samples 100 MHz of spectrum and applies realtime RFI mitigation techniques using FPGAs. A field test of an interim version of this design in a radio astronomy observation co...

متن کامل

Analysis of RFI Identification and Mitigation in CAROLS Radiometer Data Using a Hardware Spectrum Analyser

A method to identify and mitigate radio frequency interference (RFI) in microwave radiometry based on the use of a spectrum analyzer has been developed. This method has been tested with CAROLS L-band airborne radiometer data that are strongly corrupted by RFI. RFI is a major limiting factor in passive microwave remote sensing interpretation. Although the 1.400-1.427 GHz bandwidth is protected, ...

متن کامل

MERITXELL: The Multifrequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral—Instrument Description, Calibration and Performance

MERITXELL is a ground-based multisensor instrument that includes a multiband dual-polarization radiometer, a GNSS reflectometer, and several optical sensors. Its main goals are twofold: to test data fusion techniques, and to develop Radio-Frequency Interference (RFI) detection, localization and mitigation techniques. The former is necessary to retrieve complementary data useful to develop geoph...

متن کامل

Examination of a simple pulse-blanking technique for radio frequency interference mitigation

[1] Radiometry at L band can be adversely impacted by radio frequency interference (RFI) due to the presence of numerous sources, especially pulsed RFI from radars operating below 1400 MHz. RFI mitigation is very important to deal with this problem. A simple strategy for reducing pulsed RFI, termed ‘‘asynchronous pulse blanking’’ (APB), has been implemented in a digital receiver developed at Oh...

متن کامل

Characterization of L-Band RFI and Implications for Mitigation Techniques

We describe measurements of radio frequency interference (RFI) in the 1200–1800 MHz band as observed from NASA’s P-3 research aircraft during a flight along the Mid-Atlantic coast of the U.S. at altitudes of 2,000 and 20,000 ft. Both power spectra and coherently-sampled waveform data were obtained. Our results indicate that the spectrum below 1400 MHz is typically dominated by pulses from groun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009